Добавил:
Крутой челик Сюда выкладываю свои солянки, сделанные в процессе учебы. Многое недоделано и недоработано, но я надеюсь, что мой труд вам поможет и вам хватит сил довести все до ума. Передаю эстафету следующим поколениям))) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
0. Экзаменационные вопросы - цитология.docx
Скачиваний:
0
Добавлен:
28.04.2024
Размер:
26.99 Mб
Скачать
  1. Основные положения клеточной теории. Органеллы цитоплазмы участвующие в процессах переваривания и обезвреживания токсичных продуктов метаболизма (строение и функции).

Основные положения клеточной теории.

См. вопрос №14

Аппарат внутриклеточного переваривания: эндосомы и лизосомы.

Лизосомы

Лизосомы – это разнообразный класс вакуолей размером 0,2-0,4 мкм, ограниченных одиночной мембраной. Характерным признаком лизосом является наличие в них гидролитических ферментов – гидролаз (протеиназы, нуклеазы, фосфатазы, липазы и др.), расщепляющих различные биополимеры при кислом значении рН. Лизосомы были открыты в1949 г. де Дювом. Ч

Кроме собственно лизосом (первичных) различают аутофаголизосомы, или гетеролизосомы (вторичные лизосомы), и телолизосомы (остаточные тельца) (рис. 4.13).

Разнообразие морфологии лизосом объясняется тем, что эти частицы участвуют в процессах внутриклеточного переваривания, образуя сложные пищеварительные вакуоли как экзогенного (внеклеточного), так и эндогенного (внутриклеточного) происхождения.

Лизосомы (первичные) представляют собой мелкие мембранные пузырьки размером около 0,2-0,5 мкм, заполненные бесструктурным веществом, содержащим гидролазы, в том числе активную кислую фосфатазу, которая является маркерным ферментом для лизосом. Эти мелкие пузырьки практически очень трудно отличить от мелких везикул на периферии зоны комплекса Гольджи, которые также содержат кислую фосфатазу. Местом ее синтеза является гранулярная эндоплазматическая сеть. Затем этот фермент появляется в цистернах проксимальной поверхности диктиосомы, а затем в мелких везикулах по периферии диктиосомы и, наконец, в лизосомах. Таким образом, весь путь образования лизосом очень сходен с образованием секреторных (зимогенных) гранул в клетках поджелудочной железы, за исключением последнего этапа.

Гетерофаголизосомы (вторичные лизосомы), или внутриклеточные пищеварительные вакуоли, формируются при слиянии лизосом с фагоцитарными или пиноцитозными вакуолями. Если происходит слияние лизосомы измененными органеллами самой клетки, то такая структура называется аутофаголизосома. При этом ферменты лизосомы получают доступ к субстратам, которые они и начинают расщеплять. Вещества, попавшие в состав гетеро- или аутофаголизосом (вторичных лизосом), расщепляются гидролазами до мономеров, которые транспортируются через мембрану лизосомы в гиалоплазму, где они реутилизируются, т. е. включаются в различные обменные процессы.

Однако расщепление, переваривание макромолекул лизосомой может идти в ряде клеток не до конца. В этом случае в вакуолях лизосом накапливаются непереваренные продукты. Такая органелла носит название тело-лизосома, или остаточное тельце. Остаточные тельца содержат меньше гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Часто в остаточных тельцах наблюдается вторичная структуризация неперевариваемых липидов, которые образуют слоистые структуры. Там же откладываются пигментные вещества. Например, у человека при старении организма в клетках мозга, печени ив мышечных волокнах в телолизосомах происходит отложение «пигмента старения» – липофусцина.

При участии лизосом (аутофаголизосом) может происходить модификация продуктов, которые синтезированы самой клеткой. Так, с помощью лизосомальных ферментов в клетках щитовидной железы гидролизуется тиреоглобулин, что приводит к образованию тиреоидных гормонов, которые затем выводятся в кровеносное русло путем экзоцитоза.

В аутофаголизосомах обнаруживаются фрагменты или даже целые цитоплазматические структуры, например митохондрии, элементы эндоплазматической сети, рибосомы, гранулы гликогена и другие, что является доказательством их определяющей роли в процессах внутриклеточного пищеварения. ?

Функциональное значение аутофагоцитоза еще неясно. Есть предположение, что этот процесс связан с отбором и уничтожением измененных, поврежденных клеточных компонентов. В этом случае лизосомы играют роль внутриклеточных «чистильщиков», убирающих дефектные структуры. Интересно, что в нормальных условиях число аутофаголизосом увеличивается при метаболических стрессах, например при гормональной индукции активности клеток печени. Значительно возрастает число аутофаголизосом при различных повреждениях клеток, в этом случае аутофагоцитозу могут подвергаться целые зоны внутри клеток.

Увеличение числа аутофаголизосом в клетках при патологических процессах – обычное явление.

Пероксисомы

Пероксисомы в клетках тканей человека – это небольшие(размером 0,3-1,5 мкм) овальной формы тельца, ограниченные мембраной, содержащие гранулярный матрикс, в центре которого часто видны кристаллоподобные структуры, состоящие из фибрилл и трубок (сердцевина).Пероксисомы особенно характерны для клеток печени, почек. Во фракции пероксисом обнаруживаются ферменты окисления аминокислот, при работе которых образуется перекись водорода, а также выявляется фермент каталаза, разрушающий ее. Каталаза пероксисом играет важную защитную роль, так как Н,О, является токсичным веществом для клетки.

Таким образом, одномембранные органеллы клетки, составляющие вакуолярную систему, обеспечивают синтез и транспорт внутриклеточных биополимеров, продуктов секреции, выводимых из клетки, что сопровождается биосинтезом всех мембран этой системы. Лизосомы и пероксисомы участвуют в деградации экзогенных и эндогенных субстратов клетки.

Энергетический аппарат клетки

Митохондрии

Митохондрии – энергетическая система клетки, органеллы синтеза АТФ. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии для синтеза молекул АТФ. Исходя из этого, митохондрии часто называют энергетическими станциями клетки, или органеллами клеточного дыхания. ^.

Термин «митохондрия» был введен Бенда в 1897 г. для обозначения зернистых и нитчатых структур в цитоплазме разных клеток. Митохондрии можно наблюдать в живых клетках, так как они обладают достаточно высокой плотностью. Форма и размеры митохондрий животных клеток разнообразны, но в среднем толщина их около 0,5 мкм, а длина – от до 10 мкм. Подсчеты показывают, что количество их в клетках сильно варьирует –от единичных элементов до сотен. Так, в клетке печени они составляют более 20 % общего объема цитоплазмы и содержат около 30–35 % общего количества белка в клетке. Площадь поверхности всех митохондрий печёночной клетки в 4–5 раз больше поверхности ее плазматической мем-браны.

Во многих случаях отдельные митохондрии могут иметь гигантские размеры и представлять собой разветвленную сеть – митохондриальный ретикулум. Так, например, в скелетных мышцах митохондриальный ретикулум представлен множеством разветвленных и гигантских митохондриальных тяжей. Гигантские разветвленные митохондрии встречаются в клетках проксимальных отделов нефронов и др.

Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в: АТФ. Так, в сердечной мышце митохондрии находятся вблизи миофибрилл. В сперматозоидах митохондрии образуют спиральный футляр вокруг оси жгутика и т. п. Увеличение числа митохондрий в клетках происходит путем деления, или почкования, исходных митохондрий.

Митохондрии ограничены двумя мембранами толщиной около 7 нм(рис. 4.14).

Наружная митохондриальная мембрана отделяет их от гиалоплазмы. Обычно она имеет ровные контуры и замкнута, так что представляет собой мембранный мешок. Внешнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя митохондриальная мембрана ограничивает собственно внутреннее содержимое митохондрии, ее матрикс. Характерной чертой внутренних мембран митохондрий является их способность образовывать многочисленные выпячивания внутрь митохондрий. Такие выпячивания чаще всего имеют вид плоских гребней, или крист.

Матрикс митохондрий имеет тонкозернистое строение (см. рис. 4.14, 6),в нем иногда выявляются тонкие нити (толщиной около 2–3 нм) и гранулы размером около 15-20 нм. Нити матрикса митохондрий представляют собой молекулы ДНК, а мелкие гранулы – митохондриальные рибосомы.

Основная функция митохондрий – синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования аденозиндифосфата (АДФ).

Начальные этапы этих сложных процессов совершаются в гиалоплазме. Здесь происходит первичное окисление субстратов (например, сахаров) до пировиноградной кислоты (пирувата) с одновременным синтезом небольшого количества АТФ. Эти процессы совершаются в отсутствие кислорода (анаэробное окисление, гликолиз). Все последующие этапы выработки энергии – аэробное окисление и синтез основной массы АТФ – осуществляются с потреблением кислорода и локализуются внутри митохондрий. При этом происходит дальнейшее окисление пирувата и других субстратов энергетического обмена с выделением СО, и переносом протонов на их акцепторы. Эти реакции осуществляются с помощью ряда ферментов так называемого цикла трикарбоновых кислот, которые локализованы в матриксе митохондрии.

В мембранах крист митохондрии располагаются системы дальнейшего переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). При этом происходит перенос электронов от одного белка-акцептора электронов к другому и, наконец, связывание их с кислородом, вследствие чего образуется вода. Одновременно с этим часть энергии, выделяемой при таком окислении в цепи переноса электронов, запасается в виде макроэргической связи при фосфорилировании АДФ, что приводит к образованию большого числа молекул АТФ – основного внутриклеточного энергетического эквивалента. Именно на мембранах крист митохондрии происходит процесс окислительного фосфорилирования с помощью расположенных здесь белков цепи окисления и фермента фосфорилирования АДФ, АТФ-синтетазы.

Выявлено, что в матриксе митохондрии локализуется автономная система митохондриального белкового синтеза. Она представлена молекулами ДНК, свободными от гистонов, что сближает их с ДНК бактериальных клеток. На этих ДНК происходит синтез молекул РНК разных типов: информационных, трансферных (транспортных) и рибосомных. В матриксе митохондрий наблюдается образование рибосом, отличных от рибосом цитоплазмы. Эти рибосомы участвуют в синтезе ряда митохондриальных белков, не кодируемых ядром. Однако такая система белкового синтеза не обеспечивает всех функций митохондрии, поэтому автономию митохондрий можно считать ограниченной, относительной. Малые размеры молекул митохондриальных ДНК не могут определить синтез всех белков митохондрий. Показано, что подавляющее большинство белков митохондрий находится под генетическим контролем клеточного ядра и синтезируется в цитоплазме. Митохондриальная ДНК кодирует лишь 13 митохондриальных белков, которые локализованы в мембранах и представляют собой структурные белки, ответственные за правильную интеграцию в митохондриальных мембранах отдельных функциональных белковых комплексов.

Митохондрии в клетках могут увеличиваться в размерах и числе. В последнем случае происходит деление перетяжкой или фрагментация исходных крупных митохондрий на более мелкие, которые в свою очередь могут расти и снова делиться. Митохондрии очень чувствительны к изменениям проницаемости мембран, что может приводить к их обратимому набуханию.

  1. Определение термина «клетка». Органеллы цитоплазмы участвующие в сегрегации и химической перестройке веществ, синтезируемых в клетке.

Определение термина «клетка».

См. вопрос №12

Органеллы цитоплазмы участвующие в сегрегации и химической перестройке веществ, синтезируемых в клетке.

См. вопрос №14 (Комплекс Гольджи, грЭПС)

  1. Основные положения клеточной теории. Органеллы участвующие в митотическом делении.

Основные положения клеточной теории.

См. вопрос №14

Органеллы участвующие в митотическом делении.

-В вк скинули-

Органеллы цитоплазмы, участвующие в митотическом делении:

  • Центриоли;

  • Клеточный центр;

  • Микротрубочки

  1. Основные положения клеточной теории. Структуры, формирующие цитоскелет клетки. Строение и функции микрофиламентов.

Основные положения клеточной теории.

См. вопрос №14

Структуры, формирующие цитоскелет клетки.

Строение и функции микрофиламентов.

  1. Определение термина «клетка». Цитоскелет клетки, его структурные элементы и их производные. Микротрубочки, строение, значение.

Определение термина «клетка».

См. вопрос №12

Цитоскелет клетки, его структурные элементы и их производные.

Микротрубочки, строение, значение.

  1. Основные положения клеточной теории. Промежуточные филаменты строение, специфичность химического состава в различных клетках.

Основные положения клеточной теории.

См. вопрос №14

Промежуточные филаменты строение, специфичность химического состава в различных клетках.

  1. Общий план строения интерфазного ядра. Строение и значение кариотеки.

Общий план строения интерфазного ядра.

Строение и значение кариотеки.

  1. Общий план строения интерфазного ядра. Строение и функции хроматина.

Общий план строения интерфазного ядра.

См. вопрос №21

Строение и функции хроматина.

  1. Общий план строения интерфазного ядра. Строение и функции ядрышка.

Общий план строения интерфазного ядра.

См. вопрос №21

Строение и функции ядрышка.

  1. Определение термина «клетка». Изменения структур ядра в период митотического деления. Строение и функции хроматина в митозе.

Определение термина «клетка».

См. вопрос №12

Изменения структур ядра в период митотического деления. Строение и функции хроматина в митозе.

  1. Определение термина «клетка». Органеллы специального значения. Строение и функции микроворсинки, стреоцилий, киноцилий.

Определение термина «клетка».

См. вопрос №12

Органеллы специального значения.

Органеллы специального назначения – это постоянно присутствующие и обязательные для отдельных клеток микроструктуры, выполняющие особые функции, которые обеспечивают специализацию ткани и органа. К ним относят: реснички, жгутики, микроворсинки, миофибриллы.

Строение и функции микроворсинки, стреоцилий, киноцилий.

Киноцилии (греч. kinesis движение + cilium ресничка; син. жгутики, реснички) — подвижна, имеет строение сократительной реснички. Располагается всегда полярно по отношению к пучку стереоцилий.

Соседние файлы в предмете Гистология, эмбриология, цитология