Добавил:
Крутой челик Сюда выкладываю свои солянки, сделанные в процессе учебы. Многое недоделано и недоработано, но я надеюсь, что мой труд вам поможет и вам хватит сил довести все до ума. Передаю эстафету следующим поколениям))) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
0. Экзаменационные вопросы - цитология.docx
Скачиваний:
0
Добавлен:
28.04.2024
Размер:
26.99 Mб
Скачать

Развитие эмбриологии.

Эмбриология, изучающая закономерности пренатального развития организмов, имеет еще более продолжительную историю своего. формирования как науки. Тайна зарождения, развития и становления различных живых существ, возможности создания условий для проявления этих процессов (по крайней мере у птиц) возникали еще в древности. Так, упоминания о выведении цыплят в искусственных условиях (инкубаторы) в Древнем Египте, а затем в Индии, Китае имеются в трудах греческих философов. Задолго до нашей эры появились упоминания о плаценте в связи с рождением ребенка и некоторые другие сведения.

Однако первые медицинские эмбриологические наблюдения и формирование важных эмбриологических представлений, по-видимому, принадлежат Гиппократу (IV в. до н. э.) и его последователям («О природе женщины», «О семи-месячном плоде», «О сверхоплодотворении», «О семени», «О природе ребенка» и др.). Многие высказывания врачей того времени, скорее всего, представляли собой умозрительные заключения, которые тем не менее были близки к истине. Например, утверждение «о высыхании» зародыша по мере его развития, т. е. об уменьшении содержания воды в нем, или о необходимости смешения мужского и женского семени (мужские и женские половые клетки были обнаружены с помощью микроскопа соответственно лишь в XVII и XIX столетиях).

Современник Гиппократа Аристотель в своем сочинении «О возникновении животных» по существу положил начало общей и сравнительной эмбриологии. Предложенная им классификация животных по эмбриологическим признакам явилась итогом научного анализа вопросов, рассматриваемых им в 5 книгах («О происхождении семени», «О формах матки у различных животных», «О живорождении и ящеророждении» и др.). Следует заметить, что уже Аристотелем был поднят вопрос о механике развития и сформировано положение об эпигенезе. Отстаивая идею развития, Аристотель основывался на неверных заключениях о том, что зародыш развивается из женской крови(«материи») и внесенного мужчиной семени («души»), одухотворившего эту кровь. Подобные идеалистические рассуждения о нематериальном факторе (энтелехии) существовали долго и после Аристотеля в связи с сильным влиянием теологии на мировоззрение ученых, пытавшихся разобраться в причинности развития и конечной цели.

До середины XVII в. история эмбриологии не была ознаменована существенными достижениями, хотя известно, что некоторые конкретные описания зародышей, их временных и постоянных органов были сделаны к этому времени в разных странах.

В эпоху Возрождения определенный вклад в эмбриологию внес В. Гарвей –автор открытия кровообращения, который, проанализировав развитие зародышей, описал их в книге «Зарождение животных» (1651). Он высказал ряд принципиально важных утверждений. В частности, Гарвей отрицал возможность самозарождения и утверждал тезис о развитии животных только из яйца(«Живое – из яйца»). Он первый высказал предположение, которое позже было подтверждено, что «пятно» на желтке яйца птиц «есть начало цыпленка», а прыгающая «кровяная точка» является зачатком сердца. Гарвей в принципе правильно трактовал значение раннего развития крови как элемента, обеспечивающего трофику зародыша. «Жизнь заключается в крови, а кровь возникает прежде, чем начинает существовать какая-либо часть тела, и она является перед всеми прочими частями плода перворожденной», – утверждал Гарвей. Несмотря на то, что Гарвей тяготел к витализму, он стремился проникнуть в причинно-следственные отношения. Он писал: «В порождении животных всякое исследование надо вести от причин, в особенности от материальной и действующей».

Острая борьба мировоззрений разыгралась во второй половине XVII в., когда с диссертацией «Теория зарождения» (1759) выступил молодой немецкий учёный К. Ф. Вольф (1733-1794). Он подверг резкой критике взгляды преформистов и обосновал теорию эпигенеза. Согласно теории преформизма, развитие по существу представляло развертывание в пространстве заложенных при сотворении жизни готовых частей организма. Теория же эпигенеза, напротив, отстаивала новообразование органов, полностью отрицая предопределенность, или преформацию. К. Ф. Вольф впервые наблюдал у зародышей животных образование органов из листовидных пластинок (зародышевых листков), описал развитие сердца у цыпленка, развитие почки (ряд структур названы его именем) и др. Несмотря на то, что первая работа К. Ф. Вольфа была враждебно встречена в академических кругах, ее прогрессивные идеи нашли позднее отражение в трудах российского эмбриолога Х. И. Пандера (1794-1858), К. Э. Бэра(1792-1876) и в эволюционном учении Дарвина, появившемся через 100 лет(1859) после опубликования диссертации К. Ф. Вольфа. В 1768 г. К. Ф. Вольфпо приглашению Петербургской академии переехал из Германии в Россию, где и протекала вся его дальнейшая деятельность.

Однако эти теории представляли две противоположные крайности и объективно отображали лишь определенные стадии эмбриогенеза, хотя в развитии зародыша имеют место как периоды полипотентности (от лат. poly – много, potentio – возможность), так и жесткой предопределенности (преформации) развития клеток и тканей.

Соотечественник К. Ф. Вольфа А. Галлер, занимавшийся широким кругом научных проблем в области эмбриологии и физиологии, придерживался представлений, утверждавших преформизм в процессе эмбрионального развития (1750-1767). В развитии эмбриологии, как и гистологии, начиная сХУ! в., значительную роль сыграли успехи в технике исследования, в новых методических приемах, позволивших подняться над схоластикой. В частности, использование увеличительных стекол, микроскопов во второй половине ХУП в. существенно обогатило науку. Так; Р. де-Грааф и Я. Сваммердам описали в 1670 г. шаровидные полости в яичнике («граафовы пузырьки»),которые ими були неправильно отождествлены с яйцеклетками, а вскоре(1677) любознательный человек и искусный шлифовальщик увеличительных стекол А. Левенгук и студент-медик Гам описали мужские половые клетки, назвав их «семенными животными». С помощью микроскопа вновь были изучены, описаны и зарисованы стадии развития цыпленка. Однако небольшие увеличения микроскопа, а главное – метафизический характер мышления и предвзятость были характерны для ряда исследователей (М. Мальпиги, Н. Мальбранш, Я. Сваммердам и др.).

Методы исследования химического состава и метаболизма клеток и тканей.

Для изучения химического состава биологических структур – локализации веществ, их концентрации и динамики в процессах метаболизма применяют специальные методы исследования.

Цито- и гистохимические методы. Эти методы позволяют выявлять локализацию различных химических веществ в структурах клеток, тканей и органов – ДНК, РНК, белков, углеводов, липидов, аминокислот, минеральных веществ, витаминов, активность ферментов. Эти методы основаны на специфичности реакции между химическим реактивом и субстратом, входящим в состав клеточных и тканевых структур, и окрашивании продуктов химических реакций. Для контроля специфичности: реакции часто применяют соответствующие ферменты. Например, для выявления в клетках рибонуклеиновой кислоты (РНК) часто используют галлоцианин – краситель с основными свойствами, а наличие РНК подтверждают контрольной обработкой рибонуклеазой, расщепляющей РНК. Галлоцианин окрашивает РНК в сине-фиолетовый цвет. Если срез предварительно обработать рибонуклеазой, а затем окрасить галлоцианином, то отсутствие окрашивания подтверждает наличие в структуре рибонуклеиновой кислоты. Описание многочисленных цито- и гистохимических методов дается в специальных руководствах.

Сочетание гистохимических методов с методом электронной микроскопии привело к развитию нового перспективного направления – электронной гистохимии. Этот метод позволяет изучать локализацию различных химических веществ не только на клеточном, но и на субклеточном и молекулярном уровнях. Для изучения макромолекул клеток используют очень чувствительные методы с применением радиоактивных изотопов и антител, позволяющие обнаружить даже небольшое содержание молекул (менее 1000).

Радиоактивные изотопы при распаде ядра испускают заряженные частицы (электроны) или излучение (например, гамма-лучи), которые можно зарегистрировать специальными приборами. Радиоактивные изотопы используют в методе радиоавтографии. Например, с помощью радиоизотопов 3Н-тимидина исследуют ДНК ядра, с помощью 3Н-уридина – РНК.

Метод радиоавтографии. Этот метод дает возможность наиболее полно изучить обмен веществ в разных структурах. В основе метода лежит использование радиоактивных элементов (например, фосфора 32Р, углерода 14С,серы 35S, водорода 3Н) или меченных ими соединений. Радиоактивные вещества в гистологических срезах обнаруживают с помощью фотоэмульсии, которую наносят на препарат и затем проявляют. В участках препарата, где фотоэмульсия соприкасается с радиоактивным веществом, происходит фотореакция, в результате которой образуются засвеченные участки (треки). Этим методом можно определять, например, скорость включения меченых аминокислот в белки, образование нуклеиновых кислот, обмен йода в клетках щитовидной железы и др.

Методы иммунофлюоресцентного и иммуноцитохимического анализа.

Применение антител. Антитела – защитные белки, вырабатываемые плазмоцитами (производными В-лимфоцитов) в ответ на действие чужеродных веществ (антигенов). Количество различных форм антител достигает миллиона. Каждое антитело имеет участки для «узнавания» молекул, вызвавших синтез этого антитела. В связи с высокой специфичностью антител в отношении антигенов они могут быть использованы для выявления любых белков клетки. Метод основан на реакциях антиген-антитело. Каждая клетка организма имеет специфический антигенный состав, который главным образом определяется белками. Для усиления специфичности реакции применяют моноклональные антитела, образуемые линией клеток, – клонами (одна линия - один клон), полученной методом гибридом из одной клетки. Метод гибридом позволяет получать моноклональные антитела с одинаковой специфичностью и в неограниченных количествах. Антитела можно использовать для изучения антигенов как на световом, так и на ультраструктурном уровнях с помощью электронного микроскопа.

В клинической диагностике широкое применение получили методы иммуногистохимии на парафиновых срезах. Предложено большое количество молекулярных маркеров и методов обнаружения белков промежуточных филаментов, пролиферативных, дифференцировочных и апоптозных белков в клетках. Для стандартизации обработки препаратов используется иммуностейнер – устройство, с помощью которого все операции проводятся без вмешательства со стороны исследователя.

Методы иммунофлюоресцентного и иммуноцитохимического анализов широко и эффективно используются в научных исследованиях и в лабораторной диагностике. Продукты реакции можно окрашивать флюоресцирующими красителями и выявлять в люминесцентном микроскопе или использовать специальные наборы реактивов, которые окрашивают исследуемые белки, и анализировать препараты с помощью светового микроскопа. Эти методы применяются для изучения процессов дифференцировки клеток, выявления в них специфических химических соединений и структур. Методы позволяют с высокой точностью охарактеризовать функциональное состояние клеток, выявить гистогенетическую принадлежность и трансформацию клетки при онкологических заболеваниях.

Фракционирование клеточного содержимого. Фракционировать структуры и макромолекулы клеток можно различными методами – ультрацентрифугированием, хроматографией, электрофорезом. Подробнее эти методы описаны в учебниках биохимии.

Ультрацентрифугирование. С помощью этого метода клетки можно разделить на органеллы и макромолекулы. Вначале разрушают клетки осмотическим шоком, ультразвуком или механическим воздействием. При этом мембраны (плазмолемма, эндоплазматическая сеть) распадаются на фрагменты, из которых формируются мельчайшие пузырьки, а ядра и органеллы (митохондрии, комплекс Гольджи, лизосомы и пероксисомы) сохраняются интактными и находятся в образующей суспензии.

Для разделения вышеуказанных компонентов клетки применяют высокоскоростную центрифугу (80 000-150 000 об./мин). Вначале оседают (седиментируются) на дне пробирки более крупные части (ядра, цитоскелет). При дальнейшем увеличении скоростей центрифугирования надосадочных фракций последовательно оседают более мелкие частицы – сначала митохондрии, лизосомы и пероксисомы, затем микросомы и мельчайшие пузырьки и, наконец, рибосомы и крупные макромолекулы. При центрифугировании различные фракции оседают с различной скоростью, образуя в пробирке отдельные полосы, которые можно выделить и исследовать. Фракционированные клеточные экстракты (бесклеточные системы) широко используют для изучения внутриклеточных процессов, например для изучения биосинтеза белка, расшифровки генетического кода и др.

Хроматография широко используется для фракционирования белков.

Электрофорез позволяет разделить белковые молекулы с различным зарядом при помещении их водных растворов (или в твердом пористом матриксе) в электрическом поле.

Методы хроматографии и электрофореза применяют для анализа пептидов, получаемых при расщеплении белковой молекулы, и получения так называемых пептидных карт белков. Подробно эти методы описаны в учебниках биохимии.

Изучение химического состава живых клеток. Для изучения распределения веществ и их метаболизма в живых клетках используют методы ядерного магнитного резонанса и микроэлектродную технику.

Ядерный магнитный резонанс позволяет изучать малые молекулы низкомолекулярных веществ. Образец ткани содержит атомы, которые характеризуются способностью поглощать энергию на различных резонансных частотах. Диаграмма поглощения на резонансных частотах для данного образца составит его спектр ЯМР. В биологии сигнал ЯМР от протонов (ядер водорода) широко используется для изучения белков, нуклеиновых кислот и др. Для изучения макромолекул внутри живой клетки часто применяют изотопы 3Н, 14С, 32Р для получения сигнала ЯМР и слежения за его изменением в процессе жизнедеятельности клетки. Так, изотоп фосфора используется для изучения мышечного сокращения – изменений содержания в тканях АТФ и неорганического фосфата. Изотоп углерода позволяет с помощью ЯМР исследовать многие процессы, в которых участвует глюкоза. Использование ЯМР ограничено его низкой чувствительностью: в живой ткани должно содержаться не менее 0,2 ммоль исследуемого вещества. Преимуществом метода является его безвредность для живых клеток.

Микроэлектродная техника. Микроэлектроды представляют собой стеклянные трубочки, заполненные электропроводящим раствором (обычно раствор KCl в воде), диаметр конца которых измеряется долями микрометра. Кончик такой трубочки можно вводить в цитоплазму клетки через плазмолемму и определять концентрацию ионов Н+, Na+, К+, Cl-, Са2+, Mg2+, разность потенциалов на плазмолемме, а также производить инъекцию молекул в клетку. Для определения концентрации конкретного иона используют ионселективные электроды, которые заполняют ионообменной смолой, проницаемой только для данного иона. Микроэлектродную технику применяют для изучения транспорта ионов через специальные ионные каналы (специализированные белковые каналы) в плазмолемме. При этом используют микроэлектрод, который плотно прижимают к соответствующему участку плазмолеммы. Этот метод позволяет исследовать функцию одиночной белковой молекулы. Изменение концентрации ионов внутри клетки можно определить с помощью люминесцирующих индикаторов. Например, для изучения внутриклеточной концентрации Са2+ используют люминесцентный белок акварин (выделен из медузы), который излучает свет в присутствии ионов Са2+ и реагирует на изменение концентрации последнего в пределах 0,5-10 мкмоль. Синтезированы также флюоресцентные индикаторы, прочно связывающиеся с Са2+. Создание различных новых типов внутриклеточных индикаторов и современных способов анализа изображений позволяет точно и быстро определять внутриклеточную концентрацию многих низкомолекулярных веществ.

Соседние файлы в предмете Гистология, эмбриология, цитология